A Simple Randomized Sieve Algorithm for the Closest-Pair Problem
نویسندگان
چکیده
منابع مشابه
A Reliable Randomized Algorithm for the Closest-Pair Problem
The following two computational problems are studied: Duplicate grouping: Assume that n items are given, each of which is labeled by an integer key from the set {0, . . . , U − 1}. Store the items in an array of size n such that items with the same key occupy a contiguous segment of the array. Closest pair: Assume that a multiset of n points in the d-dimensional Euclidean space is given, where ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Simple Yet Fast Algorithm for the Closest-Pair Problem Using Sorted Projections on Multi-Dimensions
We present a simple greedy algorithm, QuickCP, for finding the closestpair of points on a plane. It is based on the observation that if two points are close to each other, then it is very likely that their sorted projections to x-axis and/or to y-axis will reflect that closeness. Therefore we order our search starting from the pairs with closest x-projections (and closest y-projections) to find...
متن کاملEfficient Randomized Incremental Algorithm For The Closest Pair Problem Using Leafary Trees
1. O(n) expected time randomized algorithms are presented in [4, 5, 7]. They use hashing and assumes the floor function as a unit cost operation. 2. An O(n log log n) time deterministic algorithm is presented in [3] which uses hashing and assumes floor function as a unit cost operation. 3. In [1] an O(n) expected time randomized algorithm using the real-RAM model is presented. This algorithm as...
متن کامل2D Closest Pair Problem: A Closer Look
A closer look is taken at the well-known divide-andconquer algorithm for finding the closest pair of a set of points in the plane under the Euclidean distance. An argument is made that it is sufficient, and sometimes necessary, to check only the next three points following the current point associated with the y-sorted array in the combine phase of the algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Computation
سال: 1995
ISSN: 0890-5401
DOI: 10.1006/inco.1995.1049